Astronomy

Cosmic Neighbors Inhibit Star Formation

Play
Listen to this Article
3 minutes
Loading Audio... Article will play after ad...
Playing in :00
A
A
A

Massive galaxy cluster MACS J0416 seen in X-rays (blue), visible light (red, green, and blue), and radio light (pink). CREDIT: NASA/CXC/SAO/G.OGREAN/STSCI/NRAO/AUI/NSF.

Massive galaxy cluster MACS J0416 seen in X-rays (blue), visible light (red, green, and blue), and radio light (pink).

The international University of California, Riverside-led SpARCS collaboration has discovered four of the most distant clusters of galaxies ever found, as they appeared when the universe was only four billion years old.

Clusters are rare regions of the universe consisting of hundreds of galaxies containing trillions of stars, as well as hot gas and mysterious Dark Matter.

Spectroscopic observations from the WM Keck Observatory on the summit of Hawai‘i Island’s Maunakea and the Very Large Telescope in Chile confirmed the four candidates to be massive clusters. This sample is now providing the best measurement yet of when and how fast galaxy clusters stop forming stars in the early universe.

ARTICLE CONTINUES BELOW AD
ARTICLE CONTINUES BELOW AD

“We looked at how the properties of galaxies in these clusters differed from galaxies found in more typical environments with fewer close neighbors,” said lead author Julie Nantais, an assistant professor at the Andres Bello University in Chile. “It has long been known that when a galaxy falls into a cluster, interactions with other cluster galaxies and with hot gas accelerate the shut off of its star formation relative to that of a similar galaxy in the field, in a process known as environmental quenching. The SpARCS team has developed new techniques using Spitzer Space Telescope infrared observations to identify hundreds of previously-undiscovered clusters of galaxies in the distant universe.”

Color images of the central regions of z > 1.35 SpARCS clusters. Cluster members are marked with white squares. CREDIT: NANTAIS, ET AL.

Color images of the central regions of z > 1.35 SpARCS clusters. Cluster members are marked with white squares.

As anticipated, the team did indeed find that many more galaxies in the clusters had stopped forming stars compared to galaxies of the same mass in the field.

“Fascinatingly, however, the study found that the percentage of galaxies which had stopped forming stars in those young, distant clusters, was much lower than the percentage found in much older, nearby clusters,” Gillian Wilson, professor of physics and astronomy at UC Riverside, added. “While it had been fully expected that the percentage of cluster galaxies which had stopped forming stars would increase as the universe aged, this latest work quantifies the effect.”

ARTICLE CONTINUES BELOW AD

The paper concludes that about 30% of the galaxies which would normally be forming stars have been quenched in the distant clusters, compared to the much higher value of about 50% found in nearby clusters.

Several possible physical processes could be responsible for causing environmental quenching. For example, the hot, harsh cluster environment might prevent the galaxy from continuing to accrete cold gas and form new stars; a process astronomers have named “starvation.” Alternatively, the quenching could be caused by interactions with other galaxies in the cluster. These galaxies might “harass” (undergo frequent, high speed, gravitationally-disturbing encounters), tidally strip (pull material from a smaller galaxy to a larger one) or merge (two or more galaxies joining together) with the first galaxy to stop its star formation.

While the current study does not answer the question of which process is primarily responsible, it is nonetheless hugely important because it provides the most accurate measurement yet of how much environmental quenching has occurred in the early universe. Moreover, the study provides an all-important early-universe benchmark by which to judge upcoming predictions from competing computational numerical simulations which make different assumptions about the relative importance of the many different environmental quenching processes which have been suggested, and the timescales upon which they operate.

ARTICLE CONTINUES BELOW AD

The WM Keck Observatory findings were obtained as the result of a collaboration amongst UC faculty members Gillian Wilson (UCR) and Michael Cooper (UCI), and graduate students Andrew DeGroot (UCR) and Ryan Foltz (UCR). Other authors involved in the study are Remco van der Burg (Université Paris Diderot), Chris Lidman (Australian Astronomical Observatory), Ricardo Demarco (WUniversidad de Concepción, Chile), Allison Noble (University of Toronto, Canada) and Adam Muzzin (University of Cambridge).

The WM Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two 10-meter optical/infrared telescopes near the summit of Maunakea feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrographs and world-leading laser guide star adaptive optics systems.

Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

Sponsored Content

Subscribe to our Newsletter

Stay in-the-know with daily or weekly
headlines delivered straight to your inbox.
Cancel
×

Comments

This comments section is a public community forum for the purpose of free expression. Although Big Island Now encourages respectful communication only, some content may be considered offensive. Please view at your own discretion. View Comments