Ocean Blog

Larval Fish Ingesting Plastic via Surface Slicks

November 14, 2019, 1:10 PM HST
* Updated November 14, 12:49 PM
Listen to this Article
4 minutes
Loading Audio...

Surface slicks are nursery habitat for larval fish. Photo Credit: NOAA Fisheries, Jonathan Whitney.

Plastics are now impacting fish populations widely during the larval stage, a recent study has found.

New research conducted by an international team of scientists from the National Oceanic and Atmospheric Administration, the University of Hawai‘i at Mānoa and elsewhere shows that many larval fish species from different ocean habitats are ingesting plastics in their preferred nursery habitat.

Many of the world’s marine fish spend their first days to weeks feeding and developing at the ocean surface. Larval fish are the next generation of adult fish that will supply protein and essential nutrients to people around the world. However, little is known about the ocean processes that affect the survival of larval fish, a UH press release stated.

The study, published this week in the journal Proceedings of the National Academy of Sciences, was one of the most ambitious studies to date to learn where larval fish spend their time and what they eat while there, the release continued. The researchers combined field-based plankton tow surveys and advanced remote sensing techniques to identify larval fish nursery habitats in the coastal waters of Hawai‘i.

The team found that surface slicks contained far more larval fish than neighboring surface waters. Surface slicks are naturally occurring, ribbon-like, smooth water features at the ocean surface. They are formed when internal ocean waves converge near coastlines and are observed in coastal marine ecosystems worldwide. The surface slicks also aggregate plankton, which is an important food resource for larval fish.


“We found that surface slicks contained larval fish from a wide range of ocean habitats, from shallow-water coral reefs to the open ocean and down into the deep sea — at no other point during their lives do these fish share an ocean habitat in this way,” said Jonathan Whitney, a marine ecologist for the UH Mānoa Joint Institute for Marine and Atmospheric Research and NOAA, and co-lead of the study. “Slick nurseries also concentrate lots of planktonic prey, and thereby provide an oasis of food that is critical for larval fish development and survival.”


Larval fish in the surface slicks were larger, well-developed and had increased swimming abilities. Larval fish that actively swim will better respond and orient to their environment. This suggests that tropical larval fish are actively seeking surface slicks to capitalize on concentrated prey, the release said.

The team also discovered that the same ocean processes that aggregated prey for larval fish also concentrated buoyant, passively floating plastics. “We were shocked to find that so many of our samples were dominated by plastics,” said Whitney.

Plastic densities in these surface slicks were, on average, eight times higher than the plastic densities recently found in the Great Pacific Garbage Patch. After towing the net 100 times, they found that plastics were 126 times more concentrated in surface slicks than in surface water just a couple hundred yards away. There were seven times more plastics than there were larval fish.


The majority of the plastics found in surface slicks were very small, less than 1 millimeter. Larval fish prefer their prey this size. After dissecting hundreds of larval fish, the researchers discovered that many fish species ingested plastic particles.

“We found tiny plastic pieces in the stomachs of commercially targeted pelagic species, including swordfish and mahi-mahi, as well as in coral reef species like triggerfish,” said Whitney.

Plastics were also found in flying fish, which apex predators such as tunas and most Hawaiian seabirds eat.

While recent evidence shows that adult fish ingest plastic, this is the first study to show that larval coral reef fish and pelagic species are also consuming plastic, as early as days after they are spawned.

“Larval fish are foundational for ecosystem function and represent the future of adult fish populations,” said Jamison Gove, a research oceanographer for NOAA and co-lead of the study. “The fact that larval fish are surrounded by and ingesting non-nutritious toxin-laden plastics, at their most vulnerable life-history stage, is cause for alarm.”

Researchers are unclear just how harmful plastic ingestion is to larval fish. In adult fish, plastics can cause gut blockage, malnutrition, and toxicant accumulation. Larval fish are highly sensitive to changes in their environment and food. Prey-size plastics could impact development and even reduce survivorship of larval fish that ingest them.

“Biodiversity and fisheries production are currently threatened by a variety of human-induced stressors such as climate change, habitat loss, and overfishing. Our research suggests we can likely now add plastic ingestion by larval fish to that list of threats,” said Gove.

Subscribe to our Newsletter

Stay in-the-know with daily or weekly
headlines delivered straight to your inbox.
Mahalo for Subscribing


This comments section is a public community forum for the purpose of free expression. Although Big Island Now encourages respectful communication only, some content may be considered offensive. Please view at your own discretion. View Comments